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The ingestion of convected vorticity by a high-solidity rotating blade row is a potent 
noise source in modern aeroengines, due largely to the high level of mutual 
aerodynamic interactions between adjacent blades. In order to model this process we 
solve the problem of determining the unsteady lift on an infinite cascade of finite- 
chord flat plates due to an incident vorticity wave. The method of solution is the 
Wiener-Hopf technique, and we consider the case of the reduced frequency, 52, being 
large, allowing application of asymptotic analysis in the formal limit 52 + CO. This 
approach yields considerable simplification, both in allowing the truncation of an 
infinite reflection series to just two terms, and in allowing algebraic expressions for 
the Wiener-Hopf split functions to be found. The unsteady lift distribution is 
derived in closed form, and the accuracy of the asymptotic Wiener-Hopf 
factorization demonstrated for even modest values of 52 by comparison with exact 
(but less tractable) methods. Our formulae can easily be incorporated into existing 
noise prediction codes; the advantage of our scheme is that it handles a regime in 
which conventional numerical approaches become unwieldy, as well as providing 
significant physical insight into the underlying mechanisms. 

1. Introduction 
A clear understanding of the complicated unsteady flow processes in rotating 

turbo-machinery is of fundamental importance in the design of advanced 
aeroengines, and an issue of much concern in this respect is the question of sound 
generation by such systems, particularly in view of the stringency of mandatory 
noise certification levels around many of the world’s busiest airports. Given the 
development and commissioning costs involved in engine manufacture, theoretical 
methods of predicting the noise are required; direct numerical computation of the 
far-field radiation using CFD-type codes is generally unsatisfactory, however, and 
progress must be made using semi-analytical schemes, and by solving model 
problems. In this direction considerable effort has already gone into developing noise 
prediction schemes for advanced propeller and propfan configurations, but much of 
this work cannot be applied directly to more conventional aeroengines or to the 
prototype ducted contra-fans currently under consideration as future powerplants 
for passenger aircraft, because blade aerodynamic interactions are neglected in the 
propeller analysis (this is certainly a good approximation for modern propellers, with 
typically 7 or 8 blades, but breaks down for the ducted systems where the blade 
count might be as high as 50). The aim of this paper is to describe an analytical 
prescription for extending existing propeller noise prediction schemes to the 
prediction of the sound generated by systems with closely spaced blades. 
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The blade aerodynamic interactions, or cascade effects, arise in a number of 
different ways; for instance, the merging of wakes shed by adjacent elements in a 
blade row, or changes in the isolated-blade potential field due to the proximity of 
nearest neighbours. However, the specific case we consider in this paper, and the one 
which is thought to be of particular importance in practice, is the question of blade 
row response. We have in mind the question of the sound produced when vorticity 
generated by some upstream obstruction (e.g. the wake shed by an inlet guide vane) 
interacts with a rotating blade row (e.g. the fan). The cascade effects here will include 
the multiple reflections of sound within the blade row, and the rescattering by 
leading and trailing edges; these effects would not be included in conventional 
propeller analysis, such as Parry & Crighton’s (1989) contra-rotating propeller noise 
prediction scheme. The method we shall adopt will be a variant of Lighthill’s (1952, 
1954) acoustic analogy. Lighthill’s theory, as originally formulated, states that the 
sound generated by a turbulent jet is exactly equal to that produced by an 
equivalent, fictitious distribution of quadrupoles. We emphasize that there will be no 
quadrupole distribution present in our problem to leading order, since we will 
suppose that the blades are thin a,nd apply linear theory ; however, Lighthill’s 
approach can still be adopted in our linearized cascade analysis, and now states that 
the radiation generated by the rotating blades is equal to that produced by the 
equivalent distribution of (in this case) force dipoles. Therefore, provided that the 
unsteady lift distribution on the blades due to the interaction can be estimated by 
some analytical or numerical means, this acoustic analogy gives us an integral 
prescription for determining the radiation at  infinity, by application of standard 
radiation integrals. Indeed, such integrals have already been found for rotating 
systems (see Parry & Crighton 1989); what remains to be calculated here is the 
unsteady life distribution on the blades. 

In order to model the cascade process mathematically, and to produce a practical 
prediction scheme, some simplifications are required. The incident (helical) wake 
structure will be decomposed into its Fourier modes (again, see Parry & Crighton 
1989 for details) ; we shall consider just a single harmonic gust, and here neglect the 
component of the upwash velocity parallel to the downstream blade row as being 
insignificant in the noise generation. We emphasize that the analysis in this paper 
could be repeated, with little modification, for incident sound waves, and would then 
be of particular interest in predicting levels of ‘rotor blockage’ (i.e. the degree to 
which engine noise is attenuated in passing through a blade row); we restrict 
attention here, however, to the case of incident vorticity waves. Effects of blade 
thickness and camber will also be neglected, and the blades modelled as parallel, thin 
plates (a computer-intensive method for inclusion of camber and thickness has been 
described by Verdon & Hall 1990). The blade row is ‘unwrapped’ into an infinite 
linear cascade, so that the flow at one particular radial station is mapped onto a two- 
dimensional plane; this is of course invalid if significant radial velocities exist, or if 
the radius in question is too close to the hub (so that the local curvature is too great), 
but will be acceptable as a first approximation along much of the blade. However, 
it is clear that the unwrapped geometry will not provide a sensible representation of 
the full three-dimensional problem at large distances from the blade row; after all, 
the actual motion of each blade element is along an advance helix, whilst in our two- 
dimensional approximation the blades move in straight lines. The two-dimensional 
version will not be able to provide sensible estimates of the full, three-dimensional 
radiation field at  infinity ; it will, however, give reliable predictions of those 
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quantities which are insensitive to long-range, three-dimensional effects, and, in 
particular, of the lift distribution on the blade surfaces. 

The level of cascade effects in our model will depend on two important parameters. 
First, the solidity, defined to be the ratio of blade chord, c ,  to blade spacing, s; in the 
low-solidity propeller case, cascade effects will be small, but will become increasingly 
important as the inter-blade separation is decreased. No restriction on the value of 
the solidity will be necessary in our analysis, nor on the space-chord ratio (i.e. the 
separation between adjacent leading edges divided by the blade chord), with the one 
proviso that adjacent blades must overlap. Our model will therefore certainly be 
applicable to modern turbomachinery systems, in which the solidity and space-chord 
ratio are typically order unity. Second, the reduced frequency, D, defined by 

52 = w c / u ,  

where w is the gust frequency and U is the uniform free-stream velocity ; in the ultra- 
high D limit, each blade would act as an isolated, semi-infinite plate, and cascade 
effects would be negligible. However, for more moderate values of $2 they certainly 
will be significant, especially if the gust wavelength is comparable to the blade 
spacing. Moderately large D values will be considered here (typically in the range 
10 < D < 20) ; such values certainly occur in practical situations, but as will be seen 
later, are difficult to handle using existing computational techniques. It should also 
be noted that for high, subsonic mean flow the analysis described in this paper might 
also be required, even if D is small; in the co-moving frame the gust frequency will 
be w/(  1 -M2);, so for Mach numbers, M ,  close to unity the effective reduced frequency 
could well be within our range of interest. In  this paper we shall primarily be 
concerned with the effect of varying SZ, and in the numerical examples given the 
solidity will be held fixed. 

A considerable body of literature already exists on this problem, typically 
involving solution by use of the Wiener-Hopf technique. Some of the earliest work 
was completed by Carlson & Heins (1946), Heins & Carlson (1947) and Heins (1950) 
who considered the related problem of electromagnetic waves incident on a cascade 
of semi-infinite conducting plates, and were able to evaluate transmission and 
reflection coefficients for the scattered radiation. A more complete description of 
both the Dirichlet and Von Neumann problems in this geometry is given by Meister 
(1962a, b) .  Mani & Horvay (1970) consider sound waves incident on a cascade of 
finite rigid plates, and approximate the effect of the trailing edges of the cascade by 
inclusion of the first two terms in an infinite reflection series. A more complete 
solution, including the full reflection series, is given by Koch (1971, 1983) ; both Mani 
& Horvay and Koch found only the amplitudes of the reflected and transmitted 
waves (representing the iadiation at infinity), although the usefulness of such 
quantities in the two-dimensional problem is questionable, as discussed above. Of 
fundamental importance is the factorization of the Wiener-Hopf kernel function, 
and in each of the works cited above this is achieved via infinite product 
decomposition. The factors in these infinite products represent modes radiated in 
directions ahead of and behind the cascade, and duct modes between the blades. 
There are, of course, an infinity of such modes, but only a finite number of them 
possess real wavenumbers (i.e. are cut on). In order to make an accurate prediction 
of the radiation in the two-dimensional problem, all these propagating modes must 
be considered, together with the first few cut-off modes (Koch includes the first two 
cut-off modes in his analysis). In addition, we note that the amplitude of the 
radiation depends on the modulus (and not the phase) of each Wiener-Hopf factor, 
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and that these moduli only depend on the cut-on modes. At low frequency the 
number of such cut-on modes is small (indeed, in the case considered by Koch, there 
is just one propagating, plane-wave, duct mode), and therefore the approaches of 
Mani & Horvay and Koch are particularly numerically efficient in this regime, but 
require larger amounts of computer resource at high frequency (i.e. when more modes 
are cut on). Koch’s method also suffers, at high frequency, from the need to invert 
a large matrix, essentially in determining the magnitudes of left- and right- 
propagating duct modes, which can be equally time-consuming. 

When the pressure jump across the plates is required, however, Koch’s infinite 
product factorization method cannot be used in practice for any frequency, both 
because of the complexity of the algebra, and because a large number of cut-off 
modes need to be included in order to  find both the modulus and the phase of the 
pressure jump and in resolving the leading-edge singularity. As has already been 
argued, knowledge of the (two-dimensional) radiation a t  infinity is of limited 
practical use; the important quantity which can be extracted from the two- 
dimensional problem is the lift distribution, and to  do this an alternative to  Koch’s 
method is required. Numerical techniques for calculating the pressure jump already 
exist (see in particular Kaji & Okazaki 1970a, b ;  Goldstein 1976; and the code 
LINSUB developed by Whitehead 1970), and work well for moderate reduced 
frequencies. Problems might arise for large SZ,  however, because the number of grid 
points required to resolve the gust wavelength becomes large. Moreover, numerical 
schemes cannot provide the same level of physical insight as the kind of purely 
analytical solution presented here. 

I n  this paper we describe a different approach to the problem of determining the 
lift distribution on the blades. The essential simplification (first suggested by Cargill 
1988) is to consider only large reduced frequencies (i.e. the case for which existing 
numerical schemes become impractical), and apply asymptotic analysis in the limit 
SZ --t co . The Wiener-Hopf kernel can now be factorized asymptotically, yielding 
closed algebraic expressions (retaining both modulus and phase). In  addition, a t  high 
frequency, just the first two terms in the reflection series need be included (in parallel 
to Mani & Horvay’s work), avoiding the need for large-matrix inversion. In  $2 the 
mathematical formulation of the problem is described; in $ 3  the first term in the 
reflection series, corresponding to scattering of the incident gust by the blade leading 
edges, is found; whilst in $4 the second term, corresponding to the reflection of this 
first term by the trailing edges, is calculated. Inclusion of this second term allows our 
solution to satisfy the trailing-edge Kutta condition. The factorization of the split 
function is described in $ 5  (with mathematical details in Appendix A), involving the 
asymptotic evaluation of three distinct integrals via standard theory, and inclusion 
of both saddle point (scattered field) and pole (geometrical optics) contributions. 
Results are presented in $6 for a typical set of parameter values, and their accuracy 
assessed by comparison with the exact values found from the infinite-product theory 
(which is described in Appendix B for completeness). 

The work described in this paper provides a relatively simple, fully analytical 
prescription for calculating the lift distribution on a cascade, at  high reduced 
frequency ; this information can then be used as input into existing acoustic 
prediction codes, to provide quick and accurate fan noise estimates. The advantage 
of our approach is that it can handle precisely those regimes in which numerical 
techniques become unwieldy, and an optimal strategy might well be to  use a 
numerical scheme for moderate 0, together with the asymptotic method in the high- 
frequency cases. 
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2. Mathematical formulation 
We consider an infinite two-dimensional cascade, consisting of identical rigid thin 

blades; each blade is aligned parallel to the uniform subsonic mean flow, which has 
speed U and corresponding free-stream Mach number M .  All physical variables are 
non-dimensionalized; lengths by the blade chord c ;  time by c/U; velocities by U ;  
density perturbations by the undisturbed fluid density po ; and pressure fluctuations 
by po u2. The blade spacing s, stagger d and stagger angle a and the coordinate axes 
are shown in figure 1. The blades are labelled 0, f 1, f 2, . . . ,and we suppose that 
they overlap, (i.e. d < 1). A convected harmonic gust (corresponding to a transverse 
perturbation to the mean flow) is incident on the cascade from x = - 00, so that the 
upwash normal to the nth blade is of the form 

(1) V, exp (iat - i ax  + inu) , 

where V, will be referred to as the gust velocity. The quantity u, the inter-blade phase 
angle, represents the gust phase difference between adjacent blades and will depend 
in part on the upstream mechanism generating the disturbance (for instance, if the 
gust is a component of the periodic wake shed by a forward stator, u would depend 
on the number of such stators, and on their rotational frequency measured in a frame 
in which the downstream row is fixed). Our choice of dimensionless variables means 
that s-l is the solidity, and that the gust frequency is precisely the reduced frequency 
a. In the first instance we suppose that 52 has a small negative imaginary part, a,, 
which will be set to zero at the end of the calculation. 

The transverse gust velocity V,  will be taken as small, and the free-stream Mach 
number will be supposed to be not too close to unity; in the case the magnitude of 
the scattered field will also be small, and can be legitimately modelled using linear 
theory. According to Goldstein’s (1976) splitting theorem, the perturbation velocity 
field can be decomposed into two components -the vortical part comprising the 
incident gust, and the irrotational scattered field -which are uncoupled under linear 
theory, and the scattered potential is therefore of the form q(x, y) exp (iat), with q 
satisfying the time-reduced convected wave equation 

where /3 = (1 -M2)i.  The boundary conditions are 
(i) the total normal velocity should vanish on the blades, i.e. 

3 + V, exp (inu - iax)  = 0 
aY 

o n { O < x < l , y = n s ) , f o r n = 0 , + 1 , + 2  ,...; 
(ii) the pressure, given by 

(3) 

is discontinuous across the blades, but is continuous everywhere else ; 
(iii) the scattered field must satisfy a radiation condition, which, with our 

introduction of the fictitious damping a,, is equivalent to requiring rp to be bounded 
at infinity ; 
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FIGURE 1. The blade system and coordinate axes. 

(iv) finally, since the incident gust possesses the periodicity specified in ( l ) ,  we 
shall further require that Q? is also periodic with Q ? ~ ,  the velocity potential in the strip 
{ - co < x < 00,ns < y < (n+ l)s}, given by 

( 5 )  

the advantage of this approach is that only qo need be calculated by applying the 
boundary conditions on just the zeroth blade, and the solution elsewhere determined 
from (5 ) .  

A method for solving this problem is described by Koch (1971), using the 
Wiener-Hopf technique. However, as previously noted, the complexity of this exact 
formulation is too great to allow the detailed phase information required in 
calculating the blade lift to be extracted ; some simplification if therefore required, 
and will be made in this paper by supposing that the reduced frequency, SZ, is large. 
We begin from a different standpoint to that taken by Koch, and apply 
Schwarzchild’s (1901) method (see also Landahl 1989), which provides a prescription 
for generating approximate solutions to three-part boundary-value problems. The 
scattered field in the zeroth strip, q0. is writtcn in the form 

Q?&, y) = qq@-4 y-4 exp (ha); 

and the quantities $im) and $km) found by iterative solution of an infinite sequence 
of coupled, semi-infinite Wiener-Hopf problems. It is emphasized that (6) represents 
the exact solution to  the problem, and that approximations are made by truncating 
the two power series to a finite number of terms. First, $p) is calculated to satisfy the 
boundary conditions of zero total normal velocity on {x 2 0, y = 0) and zero pressure 
jump across {x < 0, y = O}; this will include an error in the zero-pressure-jump 
boundary condition across {x 3 1,  y = 01, so +hl) (with zero normal velocity on 
{x d 1, y = 0) and a pressure jump across {x > 1, y = 0}  set to exactly cancel that  due 
to $g)) is then found, to give an improved approximation #:) + +?). However, $:) will 
have a non-zero pressure jump across {z < 0, y = 0}, so a further term $f) to balance 
this must be included, and so on. By induction, given that the first N$im) terms and 
the first (N-  1 )  $im) terms have been calculated, $AN,”’ is found to cancel the pressure 
jump of $iN) across {x > 1, y = 0}, and $i”+l) to cancel the pressure jump of $iN) 
across {x < 0, y = 0). The inductive process is repeated until the desired accuracy is 
achieved; at each stage the pressure jump off the plates departs from its correct zero 
value by a small amount (dependent on the number of iterations already made). In 
the case of supersonic mean flow, #) + $:) is the exact solution to the problem (due 
to the absence of any trailing-edge influence upstream) - see Adamczyk & Goldstein 
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(1978) ~ but no such simplification is possible in our subsonic problem, and $im) and 
$im) are non-zero for all m. 

Equation (6) can be interpreted as an infinite series of mode reflections by the 
leading and trailing edges. The incident gust will be scattered by the leading edge of 
the cascade, producing radiation in directions ahead of the blades, and possibly 
exciting cut-on modes (travelling in the positive 2-direction) in the ducts between 
adjacent blades. If such propagating modes are produced (a plane-wave mode is 
always excited, but the existence of higher-order modes depends on D being 
sufficiently large), then they will subsequently be scattered by the trailing edges of 
the cascade, producing radiation in directions behind the blades, and inducing cut- 
on reflected duct modes. These left-travelling modes will in turn interact with the 
leading edges, generating an additional scattered field ahead of the blades, and 
further right-travelling modes in the blade passage, and the whole process repeats 
indefinitely. The terms in (6) can now be identified with these infinite reflections ; the 
$im) correspond to those modes which have been generated by the mth interaction 
with the leading edge, whilst @im) correspond to those generated by the mth 
interaction with the trailing edges. 

In the high-reduced-frequency limit, the reflection coefficients at  the trailing edge 
will be small, essentially because the short-wavelength duct modes will pass through 
the open end of the duct virtually unhindered. We will therefore calculate just the 
first two terms in (6), in the formal limit D + 00 ; in $ 3  the first term $:) is calculated 
by considering the scattering of the incident gust by the leading edges of semi-infinite 
blades; in $4 the second term +il) is found by solving the problem of the field 4:) 
incident on the trailing edges. Of course, more terms in the reflection series (6) could 
be included (as described above), but just the first two will be sufficient for large D 
(particularly in the light of the good results obtained by Mani & Horvay (1970), 
whose ad h m  approximation of including just one reflection is justified by our 
asymptotic analysis). A further step in completing our solution is the factorization 
of the Wiener-Hopf kernel function in $5  (and Appendix A), and our the high- 
frequency approach will yield considerably more physical insight than standard 
infinite-product methods, as well as providing greater computational efficiency with 
little loss in accuracy. 

3. The leading-edge problem 
In this section we shall calculate the $hl) term in (6) by considering the scattering 

of the incider-t gust (1) by an infinite cascade of half-planes {x > nd, y = ns;n = 0, 
f 1, f 2, . . . }, and as noted above we need only consider the strip between y = 0 and 
y = s. For convenience, we drop the superfix (1) when referring to $il). 

The Fourier transform is defined by 

and transforming (2) yields 

with (9) 

the branch cuts in the complex k-plane are shown in figure 2, and we suppose that 

y2 = [MQ- k( 1 + M ) ]  [Ma+ k( 1 -M)]  ; 
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R' n R- I 

FIQURE 2. The complex k-plane. 

y takes negative imaginary values as k + + co along the real axis. Further, from ( 5 )  
we have 

@,(k,y) = exp(ina+inkd)@,(k,y-ns). (10) 

Equation (8) can be solved easily, and together with (10) implies that 

@& y) = A exp ( - iyy) + B  exp (iyy), 
(11) 

since the normal velocity of the scattered field must be continuous across Y = 0 for 
all z, (11) implies that 

(12) 

By taking the half-range Fourier transform (i.e. integrating over the interval 0 < z 
< 00) of the zero normal velocity boundary condition (equation (3)) we also have 
that 

y) = exp(-ia-ikd){A exp [-iy(y+s)]+Bexp[iy(y+s)]}; 

A [  1 - exp ( - i a  - ikd- iys)] = B[ 1 - exp ( - ia - ikd + iys)]. 

a@; i V  
-(k, O ) + -  = 0, aY k-52 

where @;(k, y) is simply the transform of $,(x, y) H(z),  and H(z) is the Heaviside step 
function. By transforming (4) we now write down an expression for the Fourier 
transform of the pressure jump across the zeroth blade, denoted by [Pi(k, O)]?  (with 
the superfix 1 indicating that this is the pressure jump associated with $,, i.e. with 
the leading-edge scattering), in terms of @&k, 0) and @-l(k, 0) ; from (1 l ) ,  (12) and 
(13) we find, after some manipulation, that 

where @;(k, y) is the transform of $&x, y) H( -z) and 

}. (15) 
[exp(- i~- ikd+iys)- l ] [1-exp(- i~- ikd-iys)]  

isin(ys)exp(-ia-ikd) 
X ( k )  = - 
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Equation (14) is a typical Wiener-Hopf equation with kernel X(k)  ; the form of X(k)  
is very similar to that found by Koch (1971) and by Mani & Horvay (1970), and we 
note here that it is single-valued in the complex k-plane (because the direct 
dependence of (15) on y is an even function), so that there will be no branch-cut 
contributions to subsequent integrals. 

The k-plane is split into overlapping upper and lower half-planes R+ and R- 
respectively, defined by 

{ksR+lIm(k) >*} 1 +M and {ksR-IIm(k) 

and the kernel X(k)  factorized as X = 3Er+X-, such that X*(k)  are analytic, non- 
zero and possess algebraic behaviour at infinity in R' respectively. The asymptotic 
evaluation of X*(k)  is described in $5. Since the pressure jump across y = 0 must be 
zero for x < 0, we note that [P',(k, O)]?  is analytic in R+, and write (14) in the form 

The expressions on the right-hand side of (16) are analytic in R+ and R- respectively, 
and it therefore follows that E(k)  is analytic in both R+ and R-, and by analytic 
continuation in the whole complex plane ; the facts that 

W O  - ( 2 , O )  - ( - x)-i 
ay 

as x + - 0  and the pressure jump 

as x + + 0 (consequences of the flow being effectively incompressible, and therefore 
satisfying Laplace's equation, very near the leading edge), together with Liouville's 
theorem, lead to E(k)  G O .  Equation (16) therefore yields two equations, and it can 
Gnally be shown that 

QX+(k)  X-(i2) exp (icr+ikd) cos (yy)-cos [y(y-s) ]  
cos ( ys) - cos (cr + kd) @o(k,Y) = 2(k-52)2 

or, in an alternative form, 

V, X-(Q) exp (ia + ikd) 
y) = i(k-i2)yX-(k) sin (ys) 

{cos [y(y--s)]exp (-ia-ikd)-cos (yy)}. (18) 

The scattered field will be recovered by inverting these Fourier transforms, and 
will consist of contributions from the relevant poles of Qo(k,  y), and at this point we 
consider the location of all such poles. First, the denominator of (17) will certainly 
vanish for k = c,, satisfying 

&ys+(cr+kd)  = 2nz for n = ... , -2,  - l , O ,  1 ,2  ...; (19) 
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the ufl will lie in both the upper half-plane (denoted ui )  and in the lower half-plane 
(denoted u;), and can be found in the form 

4 2 n n  - u) - ~ 2 ~ s 2  T [s2(d2 + s 2 ) i ~ 2 ~ 2 -  2 ~ 2 ~ s 2 ( 2 n x  - u) - s2p2(2nx - U ) ~ I ~  

d2 + 2 / 3 2  
u; = , 

(20) 

i[ - sz(d2 + $ 2 ~ 2 ~ 2  + 2 ~ 2 ~ s 2 ( 2 n x  - v) + s2~2(2nx - u ) ~ ] ;  
u; = > 

(21 1 

s2(d2 +s2)M2Q2-2dM20s2(2nx-u)  -s2/32(2nx-u)2 20.  (22)  

for - r < n < q ;  

4 2 n x  - u) -~252s2  
d2 + s2p:! 

for q < n < - r ,  where q and - r  are the largest and smallest integers such that 

These u; will be seen to correspond to modes radiated ahead of (and behind) the 
cascade. Second, the denominator of (18)  will vanish for those k = ki (lying in the 
upper and lower half-planes respectively), satisfying 

ys = nx for n = 0, 1 , 2 ,  ... , (23 1 

for n = O , l ,  . . . , p ;  ( 2 4 a )  P2 

for n = p + l ,  ..., (24b)  

with 

k; = 

where p is the largest integer such that (p2x2p2/s2)  > Pa2.  The kz correspond to  the 
duct modes supported in the region of overlap between adjacent blades. We can 
check that these expressions for u; and k; do indeed lie in the correct half-planes ; 
this is clear in (21)  and (24b) ,  and is confirmed in (20)  and ( 2 4 a )  by supposing 52 to 
be large, and defining the square root to take its principal value. 

The scattered field is given by 

with the inversion contour rshown in figure 2.  For x < O  we close Tin the upper half- 
plane ; from (17) the contributions to this integral will come purely from the poles a t  
k = u: (since X + ( k )  is analytic in the upper half-plane, and k = 52 lies in the lower 
half-plane), but since this part of the solution is of no relevance to our main concern 
of the pressure jump across the blades, and since it is covered in detail by the authors 
previously cited, we will not give explicit expressions for the radiated field in x < O  
here. However, for completeness we will demonstrate that our solution satisfies 
boundary condition (iii) (the radiation condition) (see §a),  and to facilitate this we 
write (17)  in the alternative form 

exP[iY(Y--s)l - exp - iY(Y - 4 1  { 1 - exp ( - iys + iu + ikd) 1 - exp (iys + icr + ikd) 
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The value of y(u:) is uniquely determine for each pole a: by our choice of branch cuts 
(equation (9) fT), and for each u; just one of k y ( a ; )  s+ cr+ u; d = 2nn is satisfied. We 
suppose in the first instance that for a given cr; we have + y(at) s + cr + u;Z d = 2nn ; 
from (26) we see that the phase of the contribution from this pole is of the form 
-ia:x-iy(a:)y, or in terms of axes aligned along the face of the cascade (see 
figure l ) ,  

- i(a: sin a -y(a:) cos a) 6- i( a: cos a + y(cr:) sin a)y" = - X2 2- iKG y", 

where K2 and KG are wavenumbers in the 9- and y"-directions respectively. From (19) 
we have 

and hence that Im(K2) = Im(aT/sinu), which is positive since a: lies in the upper 
half-plane. The waves associated with this pole therefore decay in the negative XI- 

direction, and hence satisfy (iii). Similar arguments apply to those poles k = .: 
which satisfy - y(r:)  s + v + u: d = 2nn. 

We proceed to calculate the pressure jump across the n = 0 blade by inverting Q0 

for x > 0, and the solution will fall into two distinct parts, as follows. First, for 
x > d ,  we use the form of $o given in (18), and close r in the lower half-plane. 
Pole contributions now arise from the k = k; and from k = B. The various terms in 
do(., y) can be found ; the contribution from k = k;, n = 0, 1,2, . . . is 

(28) 
E, V, X-(51) [ 1 - exp (ia + ik; d + inn)] cos (nnyls) 

exp (-ik;x), 
s(k,-Q)X-(k;) [k;p2+WB] 

where e0 = a and B ,  = 1 for n > 0; and from k = 52, 

- V, exp ( i s  + iSZd - i52x) 
[cos[y(sl)(y-s)]exp (-ic~-i51d)-cos(y(Q)y)], (29) 

Y ( Q )  sin (Y(Q) 8) 

and we find that y(B) = -iQ. We can therefore write the scattered field q50(x, y) for 
x > d in the form 

V) (30) 
03 

$o(x, y) = A,f(y) exp (-iQz) + A, cos - exp ( -ik;x), 
fl-0 

with A, and f(y) defined in (29) and A, in (28). It can easily be checked that this 
solution satisfies boundary condition (i) ; in fact the mode corresponding to k = 51 
(which represents the distorted gust as it is convected through the cascade at the 
mean-flow Mach number) entirely cancels the velocity of the incident gust, whilst the 
infinite sum (representing the right-travelling duct modes) has zero normal velocity 
on y = 0. In the case when p = 0, so that k; is complex for all n 2 1, all the duct 
modes (apart from the plane-wave mode n = 0) are non-propagating (i.e. are cut of?') 
and exhibit rapid spatial decay with x;  this is referred to as the sub-resonant 
condition by Mani & Horvay (1970). Alternatively, when p is non-zero, the first p + 1 
modes (including the n = 0 mode) are cut on, and propagate down the duct ; the so- 
called super-resonant condition. Equation (30) could be used, together with (35), to 
calculate the pressure jump across the zeroth blade for x > d .  However, a simpler 
derivation is possible from the first Wiener-Hopf equation (16) ; inversion of this 
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expression for [Pb(k,O)]+ when x < 0 leads to zero pressure jump; when x > d,  we 
have 

-iV,X-(SZ) a,( - l)n 
= X-(k;) (k;P2+M2Q)s [l-exp(-ir~-ik,d-inn)]~ 

n-0 

x exp (ia+ik;d-ikix). (31) 

Second, we consider the portion of the blade 0 < x < d ,  and to do this we must 
treat the two terms in (18) separately. The first term can be inverted for all x > 0 by 
closing the integration contour in the lower half-plane to give, in exactly the same 
way as before, 

- &cos[(s--y)y(Q)]exp(-iiS2x) . 
r(Q) sin [sr(Q)l 

m a, v, &--(a) 
cos (nzy/s) exp ( - ik; x). (32) +zo ( k ; - 9 )  X-(k;) s(M252+ k i p 2 )  

For x <d the second term cannot be inverted by closing in the lower half-plane; i t  
is therefore rewritten in the form 

(33) 
- V, =%-(a) X + ( k )  cos ( yy )  

2( k - exp ( - i a  - ikd) [cos (a + kd) - cos ( ys)] ' 

and inverted by closing in the upper half-plane, to give 

iV,X-(Q) %+(a;) (2nn-u-aid) cos[y(ai)y]exp ( ia+iaid- ia iz)  
,--m E 2(~~;-52)~sin ( a + a i d )  [2nnd-aad-s2M252-ai(P2s2 + d 2 ) ]  . (34) 

An expression for the pressure jump across the zeroth blade for 0 < x < d can now 
be calculated from (32) and (34) as 

m ia, V, X-( 52) 
(2-exp [ - ik; d-ia- inn]) exp (-ik; x) IAk O)lZ = Zo X-(k;) s(M252 + k, p') 

KX-(Q)X+(ai) (2nn-u-aid)exp ( ia+iaid- ia ix)  + 5  2(52-ai) sin ( a + a i d )  [2nnd-ad-s2M252-ai(p2s2+d2)]' (35) 

From (16), and the form of the split function given in $5, it can be seen that, in the 
limit k + 00 in R+, [Pi(k, 011' - k-t ; this yields the typical leading-edge pressure 
singularity, [p:(z,O)]+ - x-2 as x + + O .  This fact becomes readily apparent from 
equation (35) by using Lighthill's (1958) theory of asymptotic Fourier series ; it is the 
first infinite series in (35) which is singular at x = 0, and the coefficients in this mode 
series behave like nd as n+ co (since X-(k;) - (hi)-:  and k; - n as n+ co), 
corresponding to an x-; singularity. 

We emphasize that the value of [pk(x,O)]! in (0 < x < d }  is given by (35), and in 
x 2 d by (31). The physical reason that the pressure jump across the zeroth blade takes 
these differing functional forms on either side of x = d is clear. For x > d duct modes 
are supported both above and below the blade, so that the lift is generated purely by 
these duct mode contribution (i.e. (31)). Alternatively, for x < d ,  whilst duct modes 
exist below the zeroth blade none can exist above the blade (owing to the stagger of 
the cascade) ; above the blade the field is composed of radiated modes (i.e. a;), and 
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hence the pressure jump for x < d contains both duct mode and radiated mode 
contributions (i.e. (35)). The continuity of (pi(., O)]? across x = d is guaranteed by 
Cauchy’s theorem, together with the fact that the second term in (18) multiplied by 
exp ( - ikd) vanishes sufficiently rapidly a t  infinity in upper and lower half-planes. 
Equations (31) and (35), when evaluated at x = d ,  are simply two different 
representations of the same physical quantity ; the former in terms of duct modes, 
and the latter in terms of radiating modes. In order to demonstrate the smoothness 
of our solution away from the leading edge (as required by differentiability theorems 
for elliptic equations) we note that the x-derivatives of the pressure jump at x = d 
can only be found from (35) (and not from (31), the x-derivative of which diverges 
at  x = d ) ;  this is apparent from the form of the Fourier transform in (18), since 
inversion of a k-multiple of the second term is only possible by closing r in the upper 
half-plane (i.e. (35)). Once this restriction has been made, the coefficients in the 
modal expansions of (p;(x,O)]? are seen to decay exponentially with large n 
everywhere, except a t  x = 0, guaranteeing that our solution is infinitely differentiable 
away from the leading edge. 

We have therefore calculated the pressure jump across the zeroth plate (and hence, 
via (5) ,  across all the others) due to the initial scattering of the incident harmonic 
gust by the cascade leading edges. The convected-gust (0) and plane-wave (k;) 
contributions will always propagate down the ducts between adjacent blades ; at 
sufficiently high frequency other (higher-order) duct modes will also propagate. All 
these cut-on contributions will be scattered by the trailing edges, resulting in an 
additional pressure jump across the blades ; this will be calculated in the next section 
by solving the trailing-edge problem for $il)(x, y). 

4. The trailing-edge problem 
For convenience we set x’ = x - 1 in what follows, and work with a new coordinate 

origin located a t  the trailing edge of the zeroth blade. The problem is to solve for 
$r)(x’, y) using the prescription described in $2;  i.e. such that the total pressure jump 
due to q5t)+$i1) is zero across {x’ > 0, y = 0},  and such that $il) has zero normal 
derivative on {x’ < 0, y = O}. This is equivalent to consideration of the scattering of 
duct modes (specified by q5i1)) by the trailing edges of the (semi-infinite) blades; 
whilst it will typically only be the cut-on duct modes in @) which interact with the 
trailing edge (since the cut-off modes are exponentially small downstream of x = d ) ,  
we shall retain all the terms in (30) in our analysis, and thereby include consideration 
of the restricted set of parameter values for which the lowest-order cut-off mode, 
kp+l, is only just cut-off (i.e. Im(k;+l) is small) and will not have decayed significantly 
by the time it has reached the trailing edge. 

The analysis proceeds in much the same way as in $3, and we again drop the 
superfix( 1) in referring to the scattered fields. The Fourier transform of y90(x’, y) is 
now given by 

p0(k y) = Jym y) exp Wx’) dx’, (36) 

which is again split into two terms, Y$(k, y), with semi-infinite ranges of integration 
x’ > 0 and x’ < 0 respectively. Y0(k, y) will satisfy (8), so that 

(37) 

use of the periodicity condition (iv) ($2), together with the continuity of normal 

p0(k, y) = Qexp ( - iyy) + D  exp Oyy) ; 
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velocity, yields a relation between C and D and an expression for [P~(k,O)]Z (the 
Fourier transform of the pressure jump across y = 0 associated with i.e. due to 
the trailing-edge scattering) in the form 

[Pk(k, O)]? = 2i( k - Q) I)[ 1 - exp ( - ia - ikd + iys)]. (38) 

The half-range Fourier transform of the condition of zero pressure jump across 
{x' 2 0, y = O} yields 

with the second ( + )  superfix on Yo indicating that the integrations have been 
completed over the semi-infinite interval x' > 0, and that the quantities are therefore 
analytic in the upper half k-plane. It can be shown that- 

[Pb,+(k,O)]'+[P$+(k,0)1' = 0, (39) 

[Pi+(k,  O)]? = i(k-Q) [ @ i ( k ,  O ) ] ?  + A ,  

A = $o(d = 0 , O )  - #-,(x' = 0, O ) ,  

(40) 

where A is the jump in $o(x', y)  across the trailing edge, i.e. 

and expressions for A and for [@;(k,O)]t found from (30) (owing to  the change in 
coordinate origin an additional phase factor must be included in [@;(k,O)]t). An 
expression for the Fourier transform of a$o/ay is found from (37), and the condition 
of zero total normal velocity on the blade implies 

a Y; 

aY 
-(k,O) 0;  

together these yield 

2Dexp (-ia-ikd)ysin (7s) - aYi 
- - $ 9  O ) ,  a y 0  

~ (k, 0) = aY exp ( - iys- ia- ikd) - 1 ay 

and so by substituting (38), (40) and (41) into (39), and recalling the definition of 
X ( k )  (equation (15)), we have a Wiener-Hopf equation, which is written in the form 

a Y; A,exp(-ik;) k;-Q 
F ( k )  = X + ( k )  - (k, 0) + C. 

aY n-o k;-k (-1 
x [l - exp ( -inn - ik; d- ia)] 

[P$-(k,O)]? IxI -4,exp(-ik;) - c  - - 

x [ 1 - exp (-inn - ik; d-  iv)] 

(42b) 
1 "  

-~ C A ,  exp ( - ik;) [ 1 -exp ( - ia- ik; -inn)]. 
X - ( k )  n=o 

These two equations imply that F ( k )  is regular in R+ and R- respectively, and 
therefore throughout the whole complex plane. The trailing-edge Kutta condition 
implies that the pressure jump and the normal velocity must be non-singular at 
x' = 0 (see, for instance, Crighton 1085), and we therefore set F = 0. We now have 
from (42a) that 

-(x', W O  0) - (x')i 
aY 

as x'++O, 
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and from (42b) that 

m 
[ p ~ ( x ’ , O ) ] +  - - C Anexp(-iik;)[l-exp(-inx-ik;d-iia)]i(k;-51) as x’+-O; 

n-0 

by comparison with (28) and (31) it can be seen that the total pressure jump is zero 
at the trailing edge, which is exactly as would be expected. The solution can now be 
completed ; from (42a)  and from (41) an expression for D can be found, so that 

[cos (ys - yy) - exp (ia + ikd) cos (yy)] 
1 

y sin (ys)X+(k) V,(k, y) = - 

exp ( - ik;) [l - exp ( - inx - ik; d- ia)] k; - B . (-) ki -k  ’ (43) 
X-(k;) 

x 2 A n  
n-0 

or alternatively, substituting XIX-  for X+,  

exp(-iyy) + exp (iyy) To(k, y) = - exp ( - iys - ia - ikd) - 1 exp (iys- ia- ikd) - 1 

exp ( - ik;) [l- exp (-inn - ik; d- iu)] X - ( k )  
2 X - ( k ; )  k i - k  

&An 
n-0 

Recovery of +&d, y) from !Po(k, y) is completed in much the same way as in the 
previous section, and we again consider the fields inside and outside the cascade 
separately. For x’ > 0 (i.e. downstream of the trailing edge of the zeroth blade) we 
use (44) )  and close the inversion contour in the lower half-plane, and there will be 
terms arising from the poles at  k = k;, n = 0, 1,2.. . ,at k = a, and a t  a;, n = 0, & 1, 
+ 2 . .  . . The total contribution from all the k; is 

m 

- Anexp(-ik;)cos(nxy/s)exp(-ik;x’), 
n-0 

which by comparison with (30) is seen to exactly cancel the duct mode terms in 
q50(x‘, y), which is as expected since no duct modes could be supported in the free space 
behind the cascade. The contributions to the scattered field from k = c; correspond 
to radiation in directions behind the cascade, and it can be shown that these terms 
satisfy the radiation condition (boundary condition (iii)) via the same arguments as 
those following (26). Finally, the pole contribution to z,bo(z, y) from k = SZ corresponds 
to that part of the scattered solution which is convected with the mean flow, and 
together with the term in (29) represents the vortex sheet shed by the trailing edge. 
It should be noted that the boundary condition of zero pressure jump in $,+$, 
across {x’ > 0, y = 0} is satisfied by our solution, since neither the convected part of 
the solution (which has zero associated pressure) nor the radiative terms (essentially 
because of the periodicity of the solution) contain a pressure jump across y = 0. We 
will not calculate the radiative terms (or the vorticity waves) in x’ < 0, since our 
primary concern here is with the pressure jump across the blades. 

Calculation of the pressure jump generated by the trailing-edge scattering must be 
completed separately in the two regions x’ < -d  and - d < x’ < 0, in parallel with the 
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leading-edge analysis. First, to  recover kt(x’, O)]f in x‘ < - d  we use (43), and close 
the inversion contour in the upper half-plane. There will now be pole contributions 
from the zeros of ysin (ys)  in R+ (i.e. a t  k = k+,, m = 0,1,2,  . . . ) ; from k = kk there 
will be a contribution of 

ism 
s( k;p2 +M2sZ) X+( k+,) 

[ 1 - exp (ia + ik; d + imn)] S( k+,) 

x cos (mxyls )  exp (-ikk x’), (45) 

(46) 
exp ( - ik;) [ 1 - exp ( -inn - ik; d - ia)] a3 

with S(k) = C A ,  
fl-0 = n k ; )  

and we write Ilro in x‘ < 0 in the form 

00 

$o(x’, y )  = C Bm exp ( -  ik; x’) cos (mnyls), (47) 

with the coefficients B, given by (45) and (46). The pressure jump associated with $o 
across the zeroth blade for x’ < - d  is then 

m-0 

00 

b!(x’,O)]+ = C iB,(k+,-sZ)[l -exp(-ia-iikkd-imx)]exp (-ik&x’). (48) 

Second, to recover Ipt(x’,O)]t in - d  < x’ < 0 we invert the second term in (43) by 
closing the inversion contour in the upper half-plane as above. However, just as in 
$3, we must rewrite the first term in (43) in the form 

m-0 

S(k) ;  
i cos (ys - y y )  X - ( k )  

~ ( ~ - Q ) [ c o s ( Y s ) - c o s ( ~ + ~ ~ ) ]  (49) 

this is then inverted by closing the contour in the lower half-plane, with contributions 
from the poles a t  k = sZ, k = a;,n = 0, f 1, f2, ... and a t  k = k;,n = 0,1,2, ... . 
After some effort the pressure jump associated with $o in the region -d  < x’ < 0 is 
found to be 

iA,(Q- k,) exp ( -2ia- 2ik; d - ik;) m 

ktO(x’,O)l = c exp ( - ik; x’) 
m-o 1 -exp (-ia-imx-iik,d) 

s,(kk -a) S(kh) [exp ( ia+ imx + ikk d )  -21 
s(M2sZ + p2k+,) X+(k+,) 

exp ( - ikk x’) + c  
m-0 

iX-(a;) (2mx - a - a-md) S(a;) exp ( -ia-ia; d )  
m-O 2 sin (a + a; d )  [2mnd - ad -M20s2  - a;(d2 + S ~ / ~ ~ ) I  - c  

x exp ( -  ia; x’), (50) 

with S(k) defined in (46). The pressure jump generated by the scattering of )cr0 at the 
trailing edge (i.e. [p:(x’, O ) ] ? )  is therefore given by (48) in the region x’ < -d  (where 
the solution comprises contributions form duct modes), and by (50) in -d < x’ < 0 
(where the solution comprises contributions from radiated and duct modes). The 
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continuity and smoothness of b",x', O)]?  at x' = - d  can be demonstrated by use of 
exactly the same arguments as were applied in $3  for bb(x, O)]?  at 2 = d .  

The accuracy of our approach depends of course on the validity of neglecting the 
higher terms in the reflection series (6); from (45) it can in fact be seen that $o is a 
factor of O(52) smaller than q50 (since X + ( k & )  is O(524) and X-(k;) is O(Q-i)). Similar 
analysis to that employed in this section could also be used to show that the 
reflection of $o by the leading edge is a further O(52) smaller; in the notation of $2 
we have that q5im) and @im) are 0(Q2) smaller than q5im-l) and $i'+l) respectively. For 
high reduced frequency the truncation of (6) to just the first two terms therefore 
provides a good approximation, as would be expected on physical grounds, since the 
lengthscale of high-frequency radiation will be smaller than the cascade dimensions, 
so that the right-travelling duct modes can pass through the trailing-edge region 
with little reflection. 

5. Asymptotic factorization of the Wiener-Hopf kernel function 
The solution described above relies on the factorization of the Wiener-Hopf kernel 

function X ( k )  in the form X = X+X- ,  where X * ( k )  are analytic, non-zero and 
possess algebraic growth at infinity in the half-planes R* respectively. This has been 
achieved by other authors (see for instance Koch 1971 and Carlson & Heins 1946) by 
use of an infinite-product decomposition (see Appendix B of this paper); the 
disadvantage of this method, however, is that the computational time required to 
evaluate the infinite products becomes large (particularly a t  high frequency and when 
both the phase and the modulus of the product are required). A different approach 
will therefore be adopted here, and the factorization accomplished asymptotically, in 
the formal limit 52 + co . The resulting algebraic formulae will provide considerably 
more physical insight than the corresponding infinite-product expressions, will be 
easy to compute and will be seen to be valid even for relatively moderate values of 
52. 

We begin by writing 

#(W, 
2(52-k) 

Y 
X ( k )  = I 

(51) 
[ 1 - exp (ia + ikd - iys)] [ 1 - exp ( - i a  - ikd - iys)] 

1 - exp ( - 2iys) f ( k )  = 

where the first factor in X ( k )  is easy to factorize, and #(k) is the part which must 
be decomposed via asymptotic analysis. Integral expressions for the multiplicative 
decomposition factors of $(k) are given by Noble (1958), with 

the contour lies within the strip of overlap between R, and R-, with c- 2 0 (note that, 
by construction, #(k) --f 1 at co in the strip). A similar expression exists for /+(k). 

In  order to cast #-(k) into a form suitable for asymptotic analysis, we now expand 
In$ as a series of exponentials, using 

(53) 
x" 

ln(1-x) = - -, 
n-1 n 
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i SteeDest-descent 

FIGURE 3. The deformation of the X -  contour r onto the steepest-descent path through k,. In 
this case there will be a contribution from the pole at k on the real axis. 

so that from (51) 

“ 1  

12-1 n 
lnf(6) = -(exp (-Binsy(f;))-eexp (incr+intd-insy(t)) 

- exp ( - incr - intd - insy(f;))}. (54) 

Equation (53) is of course only valid provided that I x I < 1 and x $; 1 ; in the strip 
Rt n R- we have Im( y )  < 0, which guarantees that the modulus of each exponential 
term in (54) is strictly less than unity for k on the real axis, and our expansion in (54) 
is therefore valid provided we choose c- = + 0 ,  i.e. the integration contour in (52) is 
the real axis indented above. The two expressions for In/ (one being (54) and the 
other being found by taking the logarithm of (51)) therefore agree on the real axis, 
but are otherwise very different. We now factorize / ( k )  asymptotically, using the 
form for In/ given in (51); this is essentially Koiter’s (1954) method, whereby a 
function which is difficult to factorize (i.e. (51)) is represented over a limited region 
of the complex plane by a function whose factorization can be completed more easily 
(i.e. (54)). The validity of this approach is guaranteed by the fact that the $ * ( k )  
factors are calculated from integrals in the strip R+ n R-,  which is precisely where our 
two representations agree. 

The analysis now proceeds by substituting (54) into ( 5 2 ) ,  and it then remains to  
determine the leading terms in the large42 expansions of three integrals (denoted 
I , ,  I ,  and I,, and defined in Appendix A). Full mathematical details are given in 
Appendix A;  an outline of the analysis of I ,  is given below (the expansion of Ib and 
Ic  proceeds in much the same way). The problem, then, is the asymptotic evaluation 
Of  

and as stated the integration contour is the real axis indented above. The argument 
of the exponential in (55) possesses a single saddle point a t  f; = k ,  (equation (A 3)), 
so by deforming the contour onto the steepest-descent path through k,, standard 
theory can be used to calculate the leading term in the asymptotic expansion of I,. 
In  addition, a contribution from the pole of the integrand at  5 = k could also be 
present as a result of deforming the integration contour, and this will depend on the 
relative positions of the pole and the steepest-descent path (see figure 3). I n  the first 
instance if we suppose that k is real (i.e. the pole lies on the real axis), it is clear from 
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figure 3 that the pole contribution to I ,  is picked up only if k, > k. We therefore 
emphasize that there will always be a saddle point (steepest-descent) contribution to 
I, ,  and possibly a pole contribution as well. 

The asymptotic factorization of f ( k )  (and hence X ( k ) )  is now completed by use 
of the results from Appendix A; we eventually find that, for real k,  

-I c L 
2xi,=,n 

exp [ - 2insy(k,)] 

%=(E) - 
[MQ + k(  1 -M)]f 

x { (Tr exp (ini) k,-k 

exp [ina + indk, - insy(k,)] 
kb-k 

exp [ - ha - indk, - insy( k,)] 
k,-k 

[I-  H(k, - k) exp (ia + ikd - isy(k))] [ 1 - H(k, - k) exp ( - ia-ikd - isy(k))] 
[ 1 - H( k, - k) exp ( - 2isy(k))] 

X , 

(56) 

the quantities k,, kb, k, and A are defined in Appendix A, H(k) is the Heaviside step 
function, and the arbitrary constant C- is chosen for normalization purposes (C- is 
chosen so that X - ( z o )  = 1 for some fixed zo, and zo will usually be taken as zero). The 
first factor in (56) arises from (51), the exponential factor whose argument is an 
infinite sum arises from the saddle point contributions to the various integrals, and 
the factors containing the step functions arise from the pole contributions (the 
argument of one of the H being positive corresponds to a pole contribution having 
been picked up in one of I,, I ,  and I c ) .  In  deriving this expression for X - ( k )  the small 
imaginary part of Q has been set equal to zero. 

An asymptotic expression for X+(k)  can be found in much the same way, and is 
(for real k) 

C+(Q - k) 
X + ( k )  - 

[MQ - k(  1 +M)]t 

exp [ - 2insy(k,)] 
x { ( T r e x p  (i7ci) k,-k 

- -  21dMQ t exp [ina + indk, - insy(k,)] ( nsA$) exp(ini) kb-k 

2&s2 f exp [ - ina - indk, - insy( k,)] - -  ( nsAI)  exp(&i) k,-k 

[l - H(k- k,) exp (ia+ ikd -isy(k))] [l - H(k- k,) exp (-ia-ikd-iisy(k))] . 
[l -H(k- k,)exp (-Zisy(k))] 

(57) 

here C+ is chosen so that .X+(z,) = X(zo), and i t  is easy to verify that (56) and (57) 
multiply together exactly to give the correct value of X ( k )  (equation (51)). 

X , 
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FIGURE 4. Scattered rays, emitted by a leading edge and reflected by the lower blade. 

The physical interpretation of these expression follows by use of the dispersion 
relation for (2), i.e. 

(58) 

in calculating the group velocity of waves in the system ; 6, the angle a ray with wave 
vector ( k , y )  makes with the z-axis, is found to be 

(MQ -Mk)2 = k2 + y2, 

From (A 3) it is clear that  p2k, +M2Q = 0, and therefore that 6, (the angle of the ray 
corresponding to the wavenumber k,) is precisely in. Similarly, from (A 8) and (A 13) 
we have 6, = n--01 and 6, = 01, where a is the stagger angle of the cascade. 
Wavenumber k, therefore corresponds to a ray travelling parallel to the front face of 
the cascade ; k, represents the reflection of this ray from a plate ; and k, represents 
the ray parallel to the y-axis. 

I n  analogy to  the Sommerfeld diffraction problem for an isolated plate, the saddle 
point contributions to the integrals Ia, I ,  and I ,  found above correspond to radiation 
scattered by the blade leading edges, whilst the pole contributions correspond to 
the geometrical optics component of the field. Given that k, < k, < k, (but that  
6, < 8, < 8 b ) ,  it can be seen in, for example, (57) that  for wavenumbers k lying 
between k, and k, (i.e. ray direct,ions lying in between 6, and 6,) there is a 
contribution to  X + ( k )  of a factor [ 1 -exp (ia + ikd - is?)] ; this contribution 
corresponds to  rays originally emitted by the leading edge, and subsequently 
reflected by the lower blade. For k > k, (ray directions behind 6 = 6,) a second 
contribution is cut on, which, again in analogy to  the Sommerfeld problem, acts to  
(partially) cancel this reflected contribution (this cancellation is only partial since the 
region of space in which k >k, will receive radiation from other blades, and is 
therefore not a genuine shadow zone). Wavenumbers k, and k, are therefore seen to 
represent the geometrical optics shadow boundaries - rays corresponding to waves 
reflected by a given blade only propagate in directions between these boundaries - 
whilst k, represents a ray which travels along the front face of the cascade. This is 
made clear in figure 4. 

For certain parameter values, (56) and (57) will no longer remain valid, however, 
due to the pole a t  k lying close to one of the saddle points. This effect, corresponding 
to the proximity of a ray to a shadow boundary, has been considered in other 
physical situations by a number of authors (see Crighton 1971 ; Jones 1986), and 
uniform formulae could indeed be derived in our case, involving a complex error 
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function. Such uniform analysis would reveal that the transition across the shadow 
boundaries is in fact a smooth one (with the transition region having a width of 
O(Q-$), and not the step-function jump predicted by the outer solution in (56) and 
(57). However, the effort required in completing such calculations (particularly in 
view of the time-consuming computation of the various special functions) is hardly 
justified for the isolated instances in which it is needed ; in our prediction scheme we 
shall therefore use the formulae given above where appropriate, and employ the 
infinite-product factorization of Appendix B in a very small number of special cases. 
We also note that when one of the saddle points approaches the origin we can no 
longer normalize X*(k)  by choosing zo = 0 (see following (56)), since this would also 
involve the uniform asymptotic analysis in evaluating X*  (0),  and we must therefore 
make some alternative choice of zo (which lies sufficiently far from k,, k ,  and k,, and 
which does not coincide with a zero or pole of X(k))  in such cases. 

As has been seen from the previous two sections, values of X*(k)  for both cut-on 
and cut-off modes k = kf , af will be required, and the above procedure for real k 
(cut-on modes) can be generalized to include evaluation of X*(k)  for values of k lying 
off the real axis (cut-off modes) as well. The saddle point contributions will be found 
in exactly the same way as above; which pole contributions are to be included will 
depend on the relative positions of the poles and steepest-descent contours, and this 
is best determined graphically, or by simple numerical calculations involving (A 5) 
and (A 10). Modification to include the possibility of the poles approaching the saddle 
points for complex k is required, but the infinite product results will again be used 
in such special cases. 

6. Results 
We shall first demonstrate the accuracy of our asymptotic factorization method by 

comparing values for the Wiener-Hopf factors calculated using the equations 
derived in the previous section with the exact infinite-product results presented in 
Appendix B. We consider throughout the parameters M = 0.8, a = in, d = 8 and 
s = i d 3  (corresponding to a stagger angle of a = $c and a separation of 1 between 
the leading edges of adjacent blades), and illustrate the application of the method in 
detail by first taking 52 = 15; these values might typically be encountered in an 
advanced contra-fan engine operating under cruise conditions. A relatively large 
number of modes will be cut-on, with p = 5, q = 2 and r = 5 (cf. (22) and (24)). 

We describe here the calculation of X-(k)  for the wavenumbers k = k; and k = 52; 
determination of X-(cr;) follows in much the same way. The positions in the complex 
plane of the k; for n = 0 , .  . . ,12, and of Q, together with the steepest-descent paths 
defined in Appendix A, are shown in figure 5. The numerical values of these 
wavenumbers are given in table 1 ; we also note that the saddle points k,, k ,  and k,  
are - 26.667, - 49.780 and - 3.554 respectively. As described in the previous section, 
in order to determine X-(k)  asymptotically the X -  integration contour (i.e the real 
axis indented above) is deformed onto each of the three steepest-descent paths in 
turn. Considering first the calculation of X-(k;),  it is clear from figure 5 that a pole 
contribution is only picked up when deforming onto the c-contour, and then only for 
n = 4,5,6,7. No pole contributions are present for X-(Q). 

The pole at k = k; lies in close proximity to the saddle point k,, and in this isolated 
case the asymptotic formula of $5  is inapplicable and the error-function modification 
would be required. However, our formulae can readily be applied to all the remaining 
wavenumbers, and a comparison of the asymptotic and (exact) infinite-product 
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FIGURE 5. The steepest-descent curves for a = 15; other parameters are M = 0.8, d = 4, s = 42/3 
and u = $x. The k; modes (0)  for 0 < n < 12 and k = l2 (A) are also shown. Pole contributions are 
picked up when deforming the c contour for k;, k;, k, and k;. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

k; 
6.667 
6.144 
4.396 
1.299 

- 3.727 
- 12.624 
-26.667-14.315i 
- 26.667-26.0801 
- 26.667-35.05Oi 
-26.66743.01 l i  
- 26.667-50.443i 
- 26.667-57.5521 
- 26.667-64.444i 

Infinite product 

0.16W.865i 
0.1814.859i 
0 .220 .832i  
0.29fi-0.733i 
0.304-0.355i 

- 1.2384.220i 
-0.160-1.202i 

0.084-1.1441 
0.199-1.06Oi 
0.2624.9871 
0.299-0.9251 
0.32 14.872i 
0.335-0.827i 

Asymptotic 

0.183-0.881i 
0.199-0.8773 
0.260-0.856i 
0.45M.733i 

-1.214-0.155i 
- 0.179-1.2231 

0.088-1.169i 
0.207-1.087i 
0.27 1-1.014i 
0.309-0.9521 
0.3324.8991 
0.3450.853i 

* 

1Relative error) 

2.44 x 
2.94 x 
5.41 x 
1.95 x 10-1 

5.45 x 10-2 
2.30 x 
2.25 x 
2.58 x 
2.77 x 
2.94 x 
3.01 x 
3.10 x 

* 

a 15 0.055-i0.878 0.0550.880i 2.73 x 10-3 

TABLE 1. A comparison between the infinite-product (exact) and asymptotic values for Y - ( k )  
evaluated a t  the duet modes k = k; and at k = a, with = 15; other parameters are M = 0.8, 
u = @, d = 4 and s = 4d3. * indicates that  the error-function modification would be required in 
order to obtain the asymptotic value. 

values is given in table 1. As can be seen, excellent agreement is obtained, with the 
absolute value of the relative error in the asymptotic result being typically of the 
order of 2 % or less (in the case of ki a rather larger error is found, due to  the relative 
proximity of the saddle a t  k,, but this is still an acceptable level of accuracy in the 
context of asymptotic approximations, and has no practical effect on our final 
results). The most striking difference between the two methods is of course the fact 
that the asymptotic expressions were calculated relatively quickly, whilst the 
infinite-product expressions proved considerably more time-consuming (in order to 
guarantee convergence of the infinite products, especially for the higher wave- 
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numbers, as many as 6000 terms were required). In table 2 the comparison made in 
table 1 is repeated, but this time with the much lower reduced frequency of Q = 5, 
and good agreement is still obtained, with the typical error being of the order of 2 % 
or less (a larger error is found in the case of wavenumber k,, due to the relative 
proximity of the saddle ka). Evaluation of , X + ( k )  follows in the same way as 
described above. 

Having established the accuracy of our approximations to the split functions, we 
now proceed to substitute the asymptotic values of , X * ( k )  into our algebraic 
expressions for the unsteady lift distribution ((31), (35), (48) and (50)) ,  using the 
infinite-product results only at those relatively few special-case wavenumbers for 
which our asymptotic formulae are invalid. In figure 6 ( a d )  the real and imaginary 
parts of the unsteady lift distribution along the chord are presented for IR = 20,15, 
10,5; the oscillatory nature of the lift is exactly as one might expect at high 
frequency ; the leading-edge inverse square-root singularity is clearly present ; and 
the smoothness of the lift distribution at  z = 8 (for this choice of parameter values the 
point at  which the modal expansions of both $,, and @o change form) is demonstrated 
(the very small discontinuity evident in the plot of the real part of the pressure jump 
in figure 6d is a result purely of the asymptotic approximation to the Wiener-Hopf 
factors, and is of no practical significance). We emphasize that, in order to resolve the 
leading-edge singularity and to ensure that the plots are smooth, , X * ( k )  must be 
calculated for considerably more wavenumbers than are displayed in table 1 (for 
instance, in calculating the first series in (35) the first 100 terms were included). 
Application of the infinite-product factorization method throughout would therefore 
prove prohibitively time-consuming, but the use of our asymptotic factorization 
scheme means that the whole calculation can be performed with use of only limited 
computer resource. 

7. Concluding remarks 
In this paper an asymptotic method has been developed for predicting the 

unsteady lift on a blade row due to the interaction with a convected vorticity wave. 
The high-frequency approximation has facilitated two simplifications ; first the 
infinite reflection series has been legitimately truncated to just two terms, and second 
closed-form algebraic expressions for the Wiener-Hopf factors have been found (the 
accuracy of the latter having been demonstrated by comparison with exact 
factorization methods). The pressure jump comprises an infinite sum of mode 
contributions, with the form of the modal representation depending on the chordwise 
position, and is seen to possess the characteristic z-; singularity at  the leading edge 
and to obey a trailing-edge Kutta condition. A number of interesting features, such 
as the presence of shadow boundaries, are also revealed, and our formulae are in a 
form which can be used to yield useful algebraic scaling laws on the major design 
parameters. 

The value of our asymptotic approach lies in the fact that existing numerical 
techniques can prove unsatisfactory for the high-frequency cases encountered in 
ultra-high bypass ratio engines, but for which cascade effects can still be highly 
significant. The relative simplicity of the scheme should allow its extension to include 
blade camber and thickness, and to model other effects such as rotor blockage, and 
work is now well under way in this direction. 

The author is very grateful to A. M. Cargill for suggesting this problem, and to 

10 FLM 241 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

k, 
2.222 
0.433 

-8.889-4.772i 
- 8.889-14.337i 
- 8.889-21.4811 
-8.889-28.11% 
- 8.889-34.534i 
- 8.88940.839i 
- 8.889-47.076i 
- 8.88S53.269i 
- 8.889-59.432i 
- 8.889-65.573i 
-8.88S71.6981 

Z - ( k ; )  

Infinite product Asymptotic 

-0.278-2.2681 -0.131-2.2231 
- 0.735-2.15 1 i * 

1.3624.8631 1.14M.395i 
1.506-3.166i 1.54S3.162i 
1.515-2.542i 1.555-2.562i 
1.45S2.170i 1.494-2.194i 
1.390-1.91% 1.424-1.944i 
1.320-1.741i 1.35w.761 i 
1.258-1.599i 1.295-1.620i 
1.203-1.485 1.239-1.5081 
1.153-1.392i 1.19Ck1.415i 
1.108-1.313i 1.145-1.33% 
1.068-1.2461 1.105-1.271i 

[Relative error1 

6.74 x 

1.02 x 10-1 
1.24 x 
1.52 x 
1.65 x 
1.82 x 
1.91 x 10-2 
2.07 x 1Cr2 
2.23 x 
2.41 x 
2.57 x 
2.73 x lo-* 

* 

a 5 -0.038-2.433i - 0.063-2.47Oi 1.82 x 

TABLE 2. A comparison between the infinite-product (exact) and asymptotic values for X-(k) 
evaluated at  the duct modes k = k; and at  k = Q, with 52 = 5 and other parameters as in table 1 

D. G. Crighton for illuminating discussions. The work was supported by an SERC 
studentship and by Rolls-Royce plc. 

Appendix A 
In  this appendix we present the details of the asymptotic factorization of the 

Wiener-Hopf function X(k) .  By substituting (54) into (52), and noting that the 
infinite series are uniformly convergent for integration contours in the strip R+ n R-, 
we have 

exp ( -inn - intd- insy(6)) 

6 - k  
_jexp  (ina+in&-imy(t)) 

6 - k  

it follows that we have essentially three integrals to expand asymptotically, and this 
will be completed formally in the limit 52, + co (Q, is the real part of a), with 52, (the 
imaginary part of Q) small and held fixed. 
(a) The first term is 

where the contour of integration is the real axis, indented above the pole. For 
convenience, we first make the substitution E' = 6/52,, and note that there is a single 
saddle point in the argument of the exponential a t  E' = k,/Q,, where 



= N 

2
1

 

1
- 

2
.

 
I \ 

\
 

-
 

2
\

 

Fi
 2
 E 

\ 
J 

2
1

 



286 N .  Peake 

given that, in the asymptotic limit, 52,/52, can be neglected compared to unity (so 
that we can effectively set 52, = 0) we have that 

MQ d'y P3 
P ' dt' M52 y(k,) = - -(k,) = --. 

The equation of the steepest-descent path in the c plane can be found in parametric 
form : 

f = t+iIm(f) ,  
with t real and 

The integration contour in (A 2) is now deformed onto the steepest-descent path 
through k, (making an angle of in with the real axis a t  the saddle point), with the 
possibility of a contribution from the pole at 6 = k (this is made clear in figure 3). I n  
the first instance we suppose that k is real, so that the pole is picked up if k, > k ;  
standard asymptotic theory now yields the first term in the asymptotic expansion of 
I ,  for real k,  i.e. 

exp [ -2insy(k,)] 
exp (:xi) +2niH(k,-k)exp [-2insy(k)], (A 6) 

k,-k 

where H(k) is just the Heaviside step function. The continuation of this asymptotic 
expression for values of k off the real axis is straightforward ; the first term in (A 6) 
is unchanged, whilst in the second term the step function is replaced by the function 
whose value is 1 when the pole a t  6 = k is picked up by deforming the integration 
contour, and 0 otherwise (an algebraic condition for inclusion of the pole contribution 
can easily be derived from (A 5). 

( b )  The second term to be eva1uat)ed asymptotically is 

again making the substitution 5' = 6/52,, we find that the saddle point is 5' = kb/Q,, 
with 

(A 8) 

and y(kb) = M52A-i (A 9) 

~ 2 5 2  A-~MQ cot 

P2 P' 
k 

b -  

where a is the blade stagger angle and 

A = p" + cot's. 

The steepest-descent path in the 5' plane through this saddle point is given by 

Re(f) = t ,  

with the value of the square root of (A 10) chosen to yield a smooth contour. It is easy 
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to show that this steepest-descent path also makes an angle of 4. to the real axis. The 
same procedure as in part (a )  now yields, for real k, 

exp [ina+ink, d-insy(k,)] 
kb-k 

+ 2niH (k, - k) exp [ina + inkd - insy( k)], (A 11) 
and extension to complex k is made just as above. 

(c) The third term is 
exp ( - ina - in d5- insy(5)) 

d5 ; 
I , = /  t - k  

here the saddle point in the E' plane is = k,/Q,, where 

WQ A-~MO cot k =-- 
Pg c p2 + 3 

and we have y(k,) = y(kb); the steepest-descent path is obtained simply by sending 
a+  -cr and d +  - d  in (A 10). It follows, again for real k, that 

z c  - 

Appendix 

exp [ -inu -ink, d -indy(k,)] 
k,-k 

+2xiH(kc-k) exp [ -incr-inkd-insy(k)]. (A 14) 

B 
For completeness, and as a means of testing the accuracy of our asymptotic 

estimates, we describe the exact infinite-product factorization of X(k) in this 
Appendix -this has been present in slightly different forms by a number of other 
authors (see for instance Koch 1971). 

Our starting point is the decomposition (Abramowitz & Stegun 1968) 

sinu = u fi [ 1 -(;I], 
n-1 

which is employed in writing 

cos ys - cos (a + kd) 

where the un are the zeros of X ( k ) ,  as defined earlier, and a similar result can easily be 
deduced for ysinys. Now, by considering X(k) in the form 

2(Q-k) [cos ys - cos (a + M)], 
X ( k )  = 

iy sin ys 

an infinite-product expression for X + ( k )  can be found, containing those factors 
corresponding to the zeros and poles of X ( k )  which lie in the lower half-plane, so that 
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Here, ~ ( k )  is arbitrary, but will subsequently be chosen so that X + ( k )  has algebraic 
behaviour a t  infinity in the upper half-plane, and the multiplicative constant N+ has 
been included so that X + ( z , )  = X ( z , )  (zo will be chosen for convenience, and will 
often be zero) ; once this has been done, X+(k) is uniquely determined. 

In  order to calculate x we follow Noble's (1958) procedure for analysing the 
asymptotic behaviour of infinite products. We first note that, for a general infinite 
product with a, - a n  + b as n + 00, 

(B 5 )  

given the large-n behaviour of a,, the first product on the right is convergent, whilst, 
in the limit of large z ,  the second product approaches unity. Application of the 
standard results (Abramowitz & Stegun 1968) 

1 

= exp ( -Ez /a )  n 1 -- 
r( 1 + b / a )  

r( 1 + [ - z + b ] / a )  12-1 [ ( a:+b) exp , (B 7, 

with E the Euler constant, together with the asymptotic formula 

f (Az+B)  - (2.rc)texp ( - A Z )  ( ~ z ) ~ ~ + ~ - t ,  
finally yields that 

fi ( 1 - t ) e x p  (z/a,) - exp - --+-+- In -- 
n-1 [ ( :  8 3 (:) 

~ ( 1 - E )  O0 -~ 
n-i a 

Now, given that 

(B 10a) 

and 

(B l o b )  

(B loc) 

2nd - 2.rcisp - ( isdM2sZ/p) + ispa -Was2 - da 
d2 + s2/P a ; N (  d2+s2p ),+ 

cKn - (isdM"Q/p) - ispu -M251s2 - du 
d2 + s2p 

as n++ co, substitution of (B 9) and (B 10a-c) into (B 4) demonstrates that the 
necessary choice of X(k)  is 

X(k)  = (ide/n-;id-(isp/n)ln;cosec8)k, (B ~ 11) 

where tan 8 = 

as k +  00 in R+. 

be shown that X - ( k )  - k-i as k - t  00 in R-. 

The analysis also reveals that, given this choice of x, 
X + ( k )  - d 

The equivalent expression for X - ( k )  can easily be derived from X / X + ,  and it can 
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